Extensions 1→N→G→Q→1 with N=Q8xC15 and Q=C22

Direct product G=NxQ with N=Q8xC15 and Q=C22
dρLabelID
Q8xC2xC30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=Q8xC15 and Q=C22
extensionφ:Q→Out NdρLabelID
(Q8xC15):1C22 = D5xQ8:2S3φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):1C2^2480,577
(Q8xC15):2C22 = D20:D6φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):2C2^2480,578
(Q8xC15):3C22 = S3xQ8:D5φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):3C2^2480,579
(Q8xC15):4C22 = D12:D10φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):4C2^2480,580
(Q8xC15):5C22 = D15:SD16φ: C22/C1C22 ⊆ Out Q8xC151208-(Q8xC15):5C2^2480,581
(Q8xC15):6C22 = D60:C22φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):6C2^2480,582
(Q8xC15):7C22 = S3xQ8xD5φ: C22/C1C22 ⊆ Out Q8xC151208-(Q8xC15):7C2^2480,1107
(Q8xC15):8C22 = D5xQ8:3S3φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):8C2^2480,1108
(Q8xC15):9C22 = S3xQ8:2D5φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):9C2^2480,1109
(Q8xC15):10C22 = D20:16D6φ: C22/C1C22 ⊆ Out Q8xC151208-(Q8xC15):10C2^2480,1110
(Q8xC15):11C22 = D20:17D6φ: C22/C1C22 ⊆ Out Q8xC151208+(Q8xC15):11C2^2480,1111
(Q8xC15):12C22 = SD16xD15φ: C22/C1C22 ⊆ Out Q8xC151204(Q8xC15):12C2^2480,878
(Q8xC15):13C22 = Q8:3D30φ: C22/C1C22 ⊆ Out Q8xC151204+(Q8xC15):13C2^2480,879
(Q8xC15):14C22 = C3xD5xSD16φ: C22/C1C22 ⊆ Out Q8xC151204(Q8xC15):14C2^2480,706
(Q8xC15):15C22 = C3xD40:C2φ: C22/C1C22 ⊆ Out Q8xC151204(Q8xC15):15C2^2480,707
(Q8xC15):16C22 = C5xS3xSD16φ: C22/C1C22 ⊆ Out Q8xC151204(Q8xC15):16C2^2480,792
(Q8xC15):17C22 = C5xQ8:3D6φ: C22/C1C22 ⊆ Out Q8xC151204(Q8xC15):17C2^2480,793
(Q8xC15):18C22 = C2xQ8:2D15φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):18C2^2480,906
(Q8xC15):19C22 = D4:D30φ: C22/C2C2 ⊆ Out Q8xC151204+(Q8xC15):19C2^2480,914
(Q8xC15):20C22 = C2xQ8xD15φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):20C2^2480,1172
(Q8xC15):21C22 = C2xQ8:3D15φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):21C2^2480,1173
(Q8xC15):22C22 = C4oD4xD15φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):22C2^2480,1175
(Q8xC15):23C22 = D4:8D30φ: C22/C2C2 ⊆ Out Q8xC151204+(Q8xC15):23C2^2480,1176
(Q8xC15):24C22 = C6xQ8:D5φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):24C2^2480,734
(Q8xC15):25C22 = C3xD4:D10φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):25C2^2480,742
(Q8xC15):26C22 = C6xQ8xD5φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):26C2^2480,1142
(Q8xC15):27C22 = C6xQ8:2D5φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):27C2^2480,1143
(Q8xC15):28C22 = C3xD5xC4oD4φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):28C2^2480,1145
(Q8xC15):29C22 = C3xD4:8D10φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):29C2^2480,1146
(Q8xC15):30C22 = C10xQ8:2S3φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):30C2^2480,820
(Q8xC15):31C22 = C5xD4:D6φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):31C2^2480,828
(Q8xC15):32C22 = S3xQ8xC10φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):32C2^2480,1157
(Q8xC15):33C22 = C10xQ8:3S3φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):33C2^2480,1158
(Q8xC15):34C22 = C5xS3xC4oD4φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):34C2^2480,1160
(Q8xC15):35C22 = C5xD4oD12φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):35C2^2480,1161
(Q8xC15):36C22 = SD16xC30φ: C22/C2C2 ⊆ Out Q8xC15240(Q8xC15):36C2^2480,938
(Q8xC15):37C22 = C15xC8:C22φ: C22/C2C2 ⊆ Out Q8xC151204(Q8xC15):37C2^2480,941
(Q8xC15):38C22 = C4oD4xC30φ: trivial image240(Q8xC15):38C2^2480,1183
(Q8xC15):39C22 = C15x2+ 1+4φ: trivial image1204(Q8xC15):39C2^2480,1184

Non-split extensions G=N.Q with N=Q8xC15 and Q=C22
extensionφ:Q→Out NdρLabelID
(Q8xC15).1C22 = D5xC3:Q16φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).1C2^2480,583
(Q8xC15).2C22 = D20.13D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).2C2^2480,584
(Q8xC15).3C22 = S3xC5:Q16φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).3C2^2480,585
(Q8xC15).4C22 = Dic10.26D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).4C2^2480,586
(Q8xC15).5C22 = D15:Q16φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).5C2^2480,587
(Q8xC15).6C22 = C60.C23φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).6C2^2480,588
(Q8xC15).7C22 = D12.27D10φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).7C2^2480,589
(Q8xC15).8C22 = D20.14D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).8C2^2480,590
(Q8xC15).9C22 = C60.39C23φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).9C2^2480,591
(Q8xC15).10C22 = D20.D6φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).10C2^2480,592
(Q8xC15).11C22 = D20.27D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).11C2^2480,593
(Q8xC15).12C22 = D20.28D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).12C2^2480,594
(Q8xC15).13C22 = Dic10.27D6φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).13C2^2480,595
(Q8xC15).14C22 = C60.44C23φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).14C2^2480,596
(Q8xC15).15C22 = D20.16D6φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).15C2^2480,597
(Q8xC15).16C22 = D20.17D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).16C2^2480,598
(Q8xC15).17C22 = D12.D10φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).17C2^2480,599
(Q8xC15).18C22 = D30.44D4φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).18C2^2480,600
(Q8xC15).19C22 = D20.29D6φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).19C2^2480,1104
(Q8xC15).20C22 = C30.33C24φ: C22/C1C22 ⊆ Out Q8xC152408+(Q8xC15).20C2^2480,1105
(Q8xC15).21C22 = D12.29D10φ: C22/C1C22 ⊆ Out Q8xC152408-(Q8xC15).21C2^2480,1106
(Q8xC15).22C22 = SD16:D15φ: C22/C1C22 ⊆ Out Q8xC152404-(Q8xC15).22C2^2480,880
(Q8xC15).23C22 = D4.5D30φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).23C2^2480,881
(Q8xC15).24C22 = Q16xD15φ: C22/C1C22 ⊆ Out Q8xC152404-(Q8xC15).24C2^2480,882
(Q8xC15).25C22 = Q16:D15φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).25C2^2480,883
(Q8xC15).26C22 = D120:8C2φ: C22/C1C22 ⊆ Out Q8xC152404+(Q8xC15).26C2^2480,884
(Q8xC15).27C22 = C3xSD16:D5φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).27C2^2480,708
(Q8xC15).28C22 = C3xSD16:3D5φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).28C2^2480,709
(Q8xC15).29C22 = C3xD5xQ16φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).29C2^2480,710
(Q8xC15).30C22 = C3xQ16:D5φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).30C2^2480,711
(Q8xC15).31C22 = C3xQ8.D10φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).31C2^2480,712
(Q8xC15).32C22 = C5xD4.D6φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).32C2^2480,794
(Q8xC15).33C22 = C5xQ8.7D6φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).33C2^2480,795
(Q8xC15).34C22 = C5xS3xQ16φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).34C2^2480,796
(Q8xC15).35C22 = C5xQ16:S3φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).35C2^2480,797
(Q8xC15).36C22 = C5xD24:C2φ: C22/C1C22 ⊆ Out Q8xC152404(Q8xC15).36C2^2480,798
(Q8xC15).37C22 = Q8.11D30φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).37C2^2480,907
(Q8xC15).38C22 = C2xC15:7Q16φ: C22/C2C2 ⊆ Out Q8xC15480(Q8xC15).38C2^2480,908
(Q8xC15).39C22 = D4.8D30φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).39C2^2480,915
(Q8xC15).40C22 = D4.9D30φ: C22/C2C2 ⊆ Out Q8xC152404-(Q8xC15).40C2^2480,916
(Q8xC15).41C22 = Q8.15D30φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).41C2^2480,1174
(Q8xC15).42C22 = D4.10D30φ: C22/C2C2 ⊆ Out Q8xC152404-(Q8xC15).42C2^2480,1177
(Q8xC15).43C22 = C3xC20.C23φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).43C2^2480,735
(Q8xC15).44C22 = C6xC5:Q16φ: C22/C2C2 ⊆ Out Q8xC15480(Q8xC15).44C2^2480,736
(Q8xC15).45C22 = C3xD4.8D10φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).45C2^2480,743
(Q8xC15).46C22 = C3xD4.9D10φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).46C2^2480,744
(Q8xC15).47C22 = C3xQ8.10D10φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).47C2^2480,1144
(Q8xC15).48C22 = C3xD4.10D10φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).48C2^2480,1147
(Q8xC15).49C22 = C5xQ8.11D6φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).49C2^2480,821
(Q8xC15).50C22 = C10xC3:Q16φ: C22/C2C2 ⊆ Out Q8xC15480(Q8xC15).50C2^2480,822
(Q8xC15).51C22 = C5xQ8.13D6φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).51C2^2480,829
(Q8xC15).52C22 = C5xQ8.14D6φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).52C2^2480,830
(Q8xC15).53C22 = C5xQ8.15D6φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).53C2^2480,1159
(Q8xC15).54C22 = C5xQ8oD12φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).54C2^2480,1162
(Q8xC15).55C22 = Q16xC30φ: C22/C2C2 ⊆ Out Q8xC15480(Q8xC15).55C2^2480,939
(Q8xC15).56C22 = C15xC4oD8φ: C22/C2C2 ⊆ Out Q8xC152402(Q8xC15).56C2^2480,940
(Q8xC15).57C22 = C15xC8.C22φ: C22/C2C2 ⊆ Out Q8xC152404(Q8xC15).57C2^2480,942
(Q8xC15).58C22 = C15x2- 1+4φ: trivial image2404(Q8xC15).58C2^2480,1185

׿
x
:
Z
F
o
wr
Q
<